

# II Semester B.C.A. Examination, May 2017 (Y2K8 Scheme) COMPUTER SCIENCE BCA 203 : Mathematics

Time: 3 Hours

Max. Marks: 100

Instruction: Section A, B, C, D and E is compulsory to all students.

SECTION - A

I. Answer any 10 of the following.

(10×2=20)

1) Define transpose of a matrix. Give an example.

2) If 
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$
 then find 2 A'

- 3) Define a group. Give an example.
- 4) Show that set of integers, Z with multiplication is not a group.
- 5) Derive nth derivative of abx.
- 6) Write the  $n^{th}$  derivative of log(1-3x).
- 7) Find unit vector along  $\hat{i} 2\hat{j} + \hat{k}$ .
- 8) Find  $\vec{a}$ .  $\vec{b}$  if  $\vec{a} = 2\hat{i} + 4\hat{k}$  and  $\vec{b} = 3\hat{j} + 2\hat{k}$ .
- 9) Evaluate  $\int \sqrt{1+\sin 2x} \, dx$ .
- 10) Evaluate  $\int \frac{1}{\sqrt{9-4x^2}} dx$
- 11) Verify for exactness of the equation  $(2xy + 3y) dx + (x^2 + 3x) dy = 0$ .



- 12) Solve  $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$
- 13) Write the Cartesian equation of the straight line passing through the point (3, 4, 5) and parallel to vector  $2\hat{i} + 2\hat{j} 3\hat{k}$ .
- 14) Find the angle between the lines whose direction ratios are (2, 3, 4) and (1, -2, 1).
- 15) Find the co-ordinates of the point which divides the join of (1, 2, 3) and (3, -4, 5) in the ratio 5 : 6.

### SECTION - B

II. Answer any 4 of the following.

 $(4 \times 5 = 20)$ 

- 16) Using Cramer's rule find the solution for the system of equation 5x + 3y = 1 and 3x + 5y = -9.
- 17) Find eigen values and eigen vectors of  $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ .
- 18) For  $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ . Compute  $A^3$  using Cayley Hamilton theorem.
- 19) Find nth derivative of sin (ax + b).
- 20) Find n<sup>th</sup> derivative of  $\frac{x-2}{6x^2+x-1}$ .
- 21) If  $y = e^{m \sin^{-1} x}$  then prove that  $(1 x^2) y_{n+2} (2n + 1) xy_{n+1} (n^2 + m^2) y_n = 0$ .

## SECTION-C

III. Answer any 4 of the following.

 $(4 \times 5 = 20)$ 

- 22) Prove that  $G = \{3^n / n \in Z\}$  is an abelian group under multiplication.
- 23) Prove that  $G = \{1, 5, 7, 11\}$  is a group under multiplication modulo 12.
- 24) Prove that  $H = \{0, 2, 4\}$  is a subgroup of a group  $G = \{0, 1, 2, 3, 4, 5\}$  under  $\bigoplus_{6}$ .

- 25) Find the vector whose magnitude is 3 units and which is perpendicular to each of the vactors  $\vec{a} = 3\hat{i} + \hat{j} 4\hat{k}$  and  $\vec{b} = 6\hat{i} + 5\hat{j} 2\hat{k}$ .
- 26) If the vectors  $2\hat{i} 3\hat{j} + m\hat{k}$ ,  $2\hat{i} + \hat{j} \hat{k}$  and  $6\hat{i} \hat{j} + 2\hat{k}$  are coplanar then find 'M'.
- 27) Find unit vector coplanar with  $\vec{a}$  and  $\vec{b}$  perpendicular to  $\vec{c}$  given  $\vec{a} = 2\hat{i} \hat{j} \hat{k}$ ,  $\vec{b} = \hat{i} + 3\hat{j} + \hat{k}$ ,  $\vec{c} = -\hat{i} 2\hat{j} + \hat{k}$ .

# SECTION-D

IV. Answer any 4 of the following.

(4×5=20)

- 28) Evaluate  $\int \frac{3x+2}{4x^2+4x+5} dx$ .
- 29) Evaluate  $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$ .
- 30) Evaluate  $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} dx.$
- 31) Solve (x y) dy (x + y) dx = 0.
- 32) Solve  $(1 + x^2) \frac{dy}{dx} + y = e^{tan^{-1}}x$ .
- 33) Solve  $(5x^4 + 3x^2y^2 2xy^3) dx + (2x^3y 3x^2y^2 5y^4) dy = 0$ .

# SECTION-E

V. Answer any 2 of the following.

 $(2 \times 5 = 10)$ 

- 34) Show that the points (1, 3, 4), (-1, 6, 10), (-7, 4, 7) and (-5, 1, 1) are the vertices of a rhombus.
- 35) Find the ratio in which the line joining the points (2, 4, 5) and (3, 5, -4) is divided by xy plane and find the coordinate of the point.



36) Find the value of k such that the lines  $\frac{x-1}{2} = \frac{y-2}{2k} = \frac{z+1}{-1}$  and

$$\frac{x+1}{k} = \frac{y+1}{4} = \frac{z-2}{1}$$
 are

- i) parallel and
- ii) perpendicular.
- 37) Find the equation of a line passing through the point of intersection of the

lines 
$$\frac{x-1}{2} = \frac{y-1}{2} = \frac{z+2}{3}$$
 and  $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$  and perpendicular to both of them.

VI. Answer any 2 of the following.

(2×5=10)

38) If 
$$\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
,  $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ ,  $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$  find  $[\vec{a}, \vec{b}, \vec{c}]$ 

39) Evaluate 
$$\int \frac{dx}{5 + 4\cos x}$$
.

40) Solve 
$$xdy - ydx = \sqrt{x^2 + y^2} dx$$
.

41) Find the image of the point (1, 2, 3) in the plane x + y + z = 9.